	Name:	Date	e:Period:	
--	-------	------	-----------	--

Honors Biology Biotechnology Unit

Homework/Lab questions

Tab A Intro Questions

About the Amgen Biotech Experience: Program Intro (A-5 – A15)

- 1. What is **gene cloning**?
- 2. What are some diseases that can be treated with gene cloning?
- 3. What was the first commercially successful product made through this process?
- 4. What gene will we insert into the bacteria *e-coli* and what will it allow *e-coli* to do?
- 5. Explain the cause of Type 1 diabetes compared to Type 2 and the differences in how they are treated.
- 6. Where did diabetics get insulin from originally? Now where do they get it from?
- 7. In your words, what are we going to do in the whole lab series over the next few weeks?
- 8. What are 2 possible reasons sea anemones glow?

Chapter 1: Some Tools of the Trade (A-17—A31)

Lab 1.1: How to Use a Micropipette

- 1. When do you push plunger on micropipette to the second stop?
- 2. On a p-20 micropipette, draw what the windows look like if you are measuring 2μL? 10μL?

The Genetic Engineering Process

3. What is a **plasmid**?

Lab 1.2: Gel Electrophoresis

- 4. What are 3 factors that determine how quickly molecules will move through the gel during electrophoresis?
- 5. Name three uses of DNA fingerprinting by electrophoresis

Tab B: Chapter 2 How Do You begin to Clone a Gene

Plasmids and Restriction Enzymes (B-3—B-8)

- 1-4. Answer the 4 What do you already know? Questions (B-3)
- 5. What are the two forms of DNA found in bacteria? How many plasmids can be in a bacterial cell?
- 6. Explain the 4 characteristics of plasmids that make them ideal vectors for genetic engineering
- 7. What 2 antibiotics will some of our plasmids have resistance to? **and** how exactly do they create this resistance?
- 8. What will the antibiotic resistance gene allow us to see?
- 9. What do **restriction enzymes** do? What was their original purpose?
- 10-11. Answer 2 **Consider** questions (B-7)
- 12. What is happening with the increase use of antibiotics?

Lab 2: Preparing to clone the RFP Gene: Digesting the pKAN-R and pARA (B-12—B-16)

- 1. What is the overall purpose (in your words) of Laboratory 2?
- 2. Which plasmid that we are using has more base pairs (bp's)?
- 3. What are the two restriction enzymes we will be using to cut our plasmids?
- 4. Why is it beneficial to use two different restriction enzymes?
- 5.-7. Answer Questions 1-3 **Before the Lab Questions (B-13)**
- 8. Why do we create a K- and A- tube?
- 9. Why do we place tubes in a 37 ° C water bath?
- 10. How many different DNA fragments will be created by the restriction enzymes? (**DRAW** the fragments that will be made with their correct components)

Tab B: Chapter 3 Building a Recombinant Plasmid (B-23—B-32)

- 1. What is **DNA ligase**? What is its job?
- 2-5. Answer the 4 What do you already know? Questions (B-23)
- 6. Which bond does DNA ligase catalyze on the DNA strand?
- 7. Why is DNA ligase only used on 1 of the 2 strands during replication?

Laboratory 3: Building the pARA-R Plasmid

- 1. What is the main purpose (in your words) of Lab 3
- 2. Answer **Before the Lab** question #1 (B-28)
- 3. Why do we start by placing tubes in 70° C degree water bath?
- 4-8. Answer Chapter 3 questions (B-30)
- 5. **Draw the plasmid** we are hoping to create in this Lab

Tab B: Chapter 4 Making Sure You've Created a Recombinant Plasmid

- 1-4. Answer the 4 What do you already know questions (B-35)
- 5. Which electrode will the DNA fragments move towards and why?
- 6. Describe the three types of plasmid configurations and tell which one moves the fastest and slowest
- 7. What was the first type of genetic engineering and how was it done?

Laboratory 4: Verification of Restriction and Ligation Using Gel Electrophoresis

- 1. What is the overall purpose of Lab 4?
- 2-4. Answer **Before the Lab** questions #1-3 (B-41-42)

Tab B: Chapter 5 Getting Recombinant Plasmids in Bacteria

- 1. What is our next step in creating the red fluorescent protein? What's this process called?
- 2. Answer What Do You Already Know questions (B-51)
- 3. What prevents bacteria from taking up DNA from the environment easily?
- 4. How can scientists increase the chance that bacteria will take in new DNA from the environment? What do we call these bacteria after they have been treated?
- 5. How are we going to identify the bacteria that took up our recombinant plasmid?
- 6. Compare transcription/translation in Eukaryotes and prokaryotes (Did you know? box B-55)

Laboratory 5: Transforming Bacteria with the Ligation Products

1-3. Answer <u>Before the Lab</u> questions #1-3 (B-57) including: Completing Bacterial Growth **Predictions** handout

Tab E: Chapter 6 Getting What We Need

- 1. Describe the structure of a protein. What is the location of the hydrophobic amino acids?
- 2. What is the role of the resin in column chromatography?
- 3. What allows the hydrophobic amino acids to be exposed?
- 4. Describe the function on each of the three different buffers we will use in column chromatography
- 5. What allows the red fluorescent proteins to eventually be released from the resin beads?

Laboratory 6: Purifying the Flourescent Protein

1. What is the purpose of Lab 6 part A? What is the purpose of Lab 6 part B?